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Abstract. From a formula for the pointwise dimensions of Bernoulli measures on real quadratic
Julia sets, we deduce several aspects of their multifractal analysis. In particular, we prove a lower
bound for the scaling function and give explicit formulae for its borders.

1. Introduction

Multifractal properties of ergodic measures on invariant sets of dynamical systems have already
been studied in numerous works [2, 10, 7]. The purpose of this paper is to prove some
complementary aspects for the special case of Bernoulli measures on real, totally disconnected
quadratic Julia sets.

Starting from an expression for the pointwise dimensions in terms of the symbolic
dynamics, we provide explicit formulae for the pointwise dimensions at periodic points of
the dynamics. For one of the fixed points, this formula was already derived using other means,
by Bessiset al [1]. Actually, the pointwise dimensions at the fixed points are of particular
interest because they determine the borders of the scaling function of the maximal entropy
measure. This follows from a lower bound on the scaling function expressed only in terms of
the Lyapunov exponents of the family of Bernoulli measures on the Julia set. Its proof is given
in section 5.

A physical application concerns the quantum diffusion of a localized wavepacket under
the dynamics governed by a Julia matrix, notably the Jacobi matrix associated to the maximal
entropy measure on the Julia set [4, 6]. The asymptotics of the growth exponents of this
diffusion is given by the upper border of the scaling function [6]. More details are given in
remark 4 below.

At this point let us note that our results, except for this application, can be directly
transposed to other so-calledcookie cutterdynamics generated by an application on the real
line having two inverse branches [2]. For such dynamics, the self-similar invariant repellers
can then be constructed just as the Julia sets (figure 1). Only the proof of proposition 1(i) has
to be adapted to this situation.

2. Preliminaries

Let us first recall from [3] one construction of the real Julia setJ , of the polynomial map
S(E) = E2 − λ, E ∈ R andλ > 2, as well as some of its properties. Starting from the
real fixed pointsE± = (1±

√
1 + 4λ)/2 of S, we construct the interval of zeroth generation

asI 0 = [−E+, E+]. Given one-sided codesσ ∈ 6 = {−,+}×N, the 2n intervals of thenth
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Figure 1. Schematic representation of the dynamics, the intervals of
generation 0 and 1, as well as the fixed pointsE+ andE−.

generation are then given byI nσ = Sσ1 ◦· · ·◦Sσn(I 0)whereS± denote the two inverse branches
of S. There exist constantsa < 1 andb > 0 so that their lengths satisfy|Inσ | 6 b an. Then
J =⋂n>0

⋃
σ∈6 I

n
σ is a perfect, symmetric andS-invariant fractal set which is also the repeller

of the mapS(z) = z2 − λ, z ∈ C. The dynamical system(J, S) is conjugated to the shift on
6 by the coding mapE ∈ J 7→ σ(E) ∈ 6. A given probability measure on6 can be pulled
back by the coding map in order to define a probability measure onJ . In this paper, we shall
mainly be concerned with the special class of shift-invariant, ergodic measures on6 for which
theσn, n ∈ N, are independent random variables with the same distribution prob{σn = +} = p
and prob{σn = −} = 1− p, p ∈ [0, 1]. Their pullback measuresµp on J will be called
Bernoulli measures with weightp. Note thatµ0 andµ1 are the Dirac measures at the fixed
pointsE− andE+, respectively. Let us point out thatµ1/2 is the Frostman equilibrium measure
as well as the maximal entropy measure onJ .

3. Formula for the pointwise dimensions

Given any measureµ onR, its lower- and upper-pointwise dimensions atE ∈ R are defined
as

dµ(E) = lim inf
ε→0

log(µ([E − ε, E + ε]))

log(ε)
dµ(E) = lim sup

ε→0

log(µ([E − ε, E + ε]))

log(ε)
.

Whenever the limitε → 0 exists, one also writesdµ(E) = dµ(E) = dµ(E). For any measure
µ supported onJ , the pointwise dimensions are given by [2,4,7]

dµ(E) = lim inf
n→∞

− 1
n

log(µ(Inσ(E)))
1
n

∑n−1
i=0 log(|S ′(S◦i (E))|)

dµ(E) = lim sup
n→∞

− 1
n

log(µ(Inσ(E)))
1
n

∑n−1
i=0 log(|S ′(S◦i (E))|) .

It immediately follows from the Breiman–Shannon–McMillan theorem and Birkhoff’s ergodic
theorem that, whenever the measureµ is ergodic, the lower- and upper-pointwise dimensions
coincideµ-almost surely and areµ-almost surely equal to the quotient of the dynamical entropy
and the Lyapunov exponent ofµ. Such measures with almost surely constant dimensions are
called exactly scaling, and the almost sure value is sometimes called the information dimension.
By the theory of Rogers and Taylor [8] and its dual [5], this almost-sure value is also equal
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to the Hausdorff and packing dimensions dimH(µ) and dimP(µ) of µ which are defined by
the infimum of the Hausdorff (packing) dimensions of all Borel subsets1 ⊂ R satisfying
µ(1) = 1. Furthermore [5], introducing the notationsd+

µ(1) = µ- esssupE∈1 dµ(E) and

d
+
µ(1) = µ- esssupE∈1 dµ(E) for any Borel set1 ⊂ R, the following identities hold whenever
µ(1) > 0:

dimH({E ∈ 1|dµ(E) = d+
µ(1)}) = d+

µ(1)

dimP({E ∈ 1|dµ(E) = d+
µ(1)}) = d

+
µ(1).

(1)

For Bernoulli measures, the above formula for the lower-pointwise dimensions becomes

dµp(E) = lim inf
n→∞

−ρn(E) log(p)− (1− ρn(E)) log(1− p)
1
n

∑n−1
i=0 log(|S ′(S◦i (E))|) (2)

wherenρn(E) is the number of + in the firstn elements of the codeσ(E); a similar formula
gives the upper pointwise dimensions. The other of the above statements can be resumed as
follows:

dimH(µp) = dimP(µp) = E(µp)
3(µp)

= dµp(E) µp-a.s. (3)

where3(µp) =
∫

dµp (E) log(2|E|) is the Lyapunov exponent ofµp and E(µp) =
−p log(p) − (1− p) log(1− p) its dynamical entropy. We remark that dim(µ1/2) can be
shown to be a harmonic function ofλ decreasing as log(4)/(log(λ) + o(1)) [9].

As Hausdorff and packing dimensions coincide in all the cases we consider here, we
suppress the corresponding index when calculating dimensions of sets or measures.

4. Local dimensions at periodic points

As the next application of formulae (2), we consider the pointwise dimensions at periodic
points ofS. Thek-periodic points are solutions of the algebraic equationS◦k(E) = E. Each
of them is associated to a code(ηi)i=1...k of lengthk and we denote it byEη1...ηk . It satisfies
Sη1 . . . Sηk (Eη1...ηk ) = Eη1...ηk . Then

dµp(Eη1...ηk ) =
−ρk(Eη1...ηk ) log(p)− (1− ρk(Eη1...ηk )) log(1− p)∑k

i=1 log(|2S◦i (Eη1...ηk )|)
.

These dimensions are constant on each orbit. Furthermore, the pointwise dimension of any
preiterate of a periodic point is given by the dimension at the periodic point. This follows from
the fact that the code of anmth preiterate can only differ from the code of the periodic point by
the signsσi, i = 1, . . . , m; this finite number of different values does not influence the value
of the exponent in (2). Each set of preiterates is dense inJ , however, as it is countable, its
Hausdorff dimension is equal to zero.

In order to give more explicit formulae, let us first calculate the pointwise dimensions at
the fixed pointsE± = (1±

√
1 + 4λ)/2:

dµp(E+) = − log(p)

log(
√

1 + 4λ + 1)
dµp (E−) =

− log(1− p)
log(
√

1 + 4λ− 1)
.

We remark that, forp = 1
2, dµp(E+) has already been calculated in [1] by other means. It is

worth noting that forpλ determined as a solution of

pλ + pβλλ = 1 βλ = log(
√

1 + 4λ− 1)

log(
√

1 + 4λ + 1)



2890 H Schulz-Baldes

one hasdµpλ (E+) = dµpλ (E−). Fromβλ ∈ ( 1
2, 1) follows pλ ∈ ((3−

√
5)/2, 1

2).
As a second explicit example, we consider the two-periodic points. Two are given byE±,

the other two byE+− = (−1 +
√

4λ− 3)/2 andE−+ = (−1−√4λ− 3)/2. Their pointwise
dimension is

dµp(E−+) = dµp(E+−) =
− 1

2 log(p)− 1
2 log(1− p)

log(2λ− 2)
.

The following result shows that the pointwise dimensions at the fixed points are of
particular interest because they give bounds for the dimensions at other points. Let us introduce
the pointwise Lyapunov exponents atE ∈ J :

3(E) = lim inf
n→∞

1

n

n−1∑
i=0

log(|S ′(S◦i (E)|) 3(E) = lim sup
n→∞

1

n

n−1∑
i=0

log(|S ′(S◦i (E)|).

If the limit exists, we set3(E) = 3(E) = 3(E).
Proposition 1. Letλc = 2.32.

(i) We have for anyE ∈ J
log(
√

1 + 4λ− 1) 6 3(E) 6 log(
√

1 + 4λ + 1)

where, for the first inequality, we supposeλ > λc to hold.
(ii) For p > 1

2 , dµp(E) > dµp(E+) for all E ∈ J .
(iii) For λ > λc, dµ1/2

(E) 6 dµ1/2(E−) for all E ∈ J .

The conditionλ > λc in (i) and (iii) can probably be removed, but it seems that our
elementary proof does not allow one to treatλ in the interval(2, λc), for which the non-
hyperbolic character of the Julia sets is more difficult to trace. We further believe (ii) to be
only partial. More precisely, we expect thatdµp(E+) is the smallest pointwise dimension for
all p > pλ and thatdµp(E−) is the smallest dimension forp 6 pλ (compare remark 1 and
figure 2 as an indication in this sense).

Proof of proposition 1. We note that3(E) is equal to log(2) + lim supn→∞
log(

∏n−1
i=0 |S◦i (E)|)/n. NowE+ = maxE∈J |E| and hence

∏n−1
i=0 |S◦i (E+)| = En+ is bigger or

equal to
∏n−1
i=0 |S◦i (E)| for anyE ∈ J and anyn ∈ N. Consequenly3(E) 6 log(2)+log(E+),

which is precisely the second inequality.
To prove the first one, it is sufficient to show that for allE ∈ J there are infinitely

many n ∈ N satisfying
∏n−1
i=0 |S◦i (E)| > |E−|n. For n = 0, this inequality is trivially

satisfied. Suppose that it holds forn− 1. If |S◦n(E)| > |E−|, it also holds forn. Otherwise,
some analysis of the functiong(E) = E · |S(E)| on R+ shows |S◦n+1(E) · S◦n(E)| >
min{E+ · S+(−E+), |E−|2}. Now |E−|2 6 E+ · S+(−E+) holds for allλ > 2.62 as numerical
study of the algebraic expressions shows immediately. In this case, the above inequality holds
also forn+ 1. Hence it is verified for at least every secondn whenλ > 2.62. In order to reach
all λ > 2.32, one can refine the argument by treating a point in the left-most positive interval
of the fourth-generation [S+(−E+), S+S−S+S+(−E+)] separately by considering the products
S◦n(E)S◦n+1(E)S◦n+2(E). Details are omitted.

For anyE, the lower-pointwise dimensions ofµp can be estimated from below:

dµp(E) >
− log(1− p) + log

(
1−p
p

)
lim inf n→∞ ρn(E)

3(E)
.

As p > 1
2, log((1 − p)/p) 6 0 and the factor lim infn→∞ ρn(E) in the denominator can

be estimated by (1). The denominator is smaller or equal to log(|2E+|) by (i). This gives
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Figure 2. The scaling function calculated by use of the thermodynamic formalism and and its
lower boundf̂ , given by (4) forλ = 2.2 andp = 1

2 .

(ii). Finally we note that the numerator in (2) is equal to log(2) if p = 1
2. Therefore,

dµ1/2
(E) = log(2)/3(E) and (i) implies (iii). �

5. Lower bound and borders of the scaling function

The scaling function ofµp is defined to befp(α) = dim({E ∈ J |dµp(E) = α}). Equation (3)

givesfp(dim(µp)) = dim(µp). We shall now boundfp by a graphf̂p given by the following
one-parameter family of points inR2:{(−r log(p)− (1− r) log(1− p)

3(µr)
, dim(µr)

)∣∣∣∣ r ∈ [0, 1]

}
. (4)

Proposition 2. f̂p 6 fp, or more explicitly

fp

(−r log(p)− (1− r) log(1− p)
3(µr)

)
> dim(µr) ∀r ∈ [0, 1].

This lower bound allows one to determine the borders of the scaling function.

Proposition 3. (i) For p > 1
2 , dµp(E+) = inf {α ∈ R|fp(α) > 0}.

(ii) For λ > λc, dµ1/2(E−) = sup{α ∈ R|f1/2(α) > 0}.
Comments on these results follow their proofs.

Proof of proposition 2. For r ∈ {0, 1}, dim(µr) = 0 and there is nothing to prove. For
r ∈ (0, 1), let us denote byF(r), the set of points for which(ρn(E),

∑n
i=1 log(|2S◦i−1(E)|)/n)
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does not converge to(r,3(µr)) in the limit n→∞. By the ergodic theorem,µr(F(r)) = 0.
Next we introduce the sets

S(r) =
{
E ∈ J\F(r)

∣∣∣∣dµp(E) = −r log(p)− (1− r) log(1− p)
3(µr)

}
.

We shall prove that dim(S(r)) = dim(µr) which already implies the desired result. Because
the ergodic sums converge at the points inS(r), one hasS(r) = {E ∈ J\F(r)|dµr (E) =
dim(µr)}. But now, sinceJ\F(r) has fullµr -measure, the (Hausdorff or packing) dimension
of S(r) is equal to dim(µr) by equations (1) and (3). �

Proof of proposition 3. We first note that the applicationp ∈ [0, 1] 7→ µp is weakly
continuous so that the family of Lyapunov exponents3(µp) is continuous inp ∈ [0, 1].
According to proposition 1(ii), there are no pointwise dimensions smaller thandµp(E+). Hence
fp(α) = 0 for α < dµp(E+). On the other hand, the continuity of the Lyapunov exponents
implies that, asr → 1 in (4), the footpoint converges todµp(E+). But for any r < 1,
dim(µr) > 0 becauseE(µr) > 0 and3(µr) > 0 in equation (3). Thus by proposition 2,
f (α) > 0 for α > αµp(E+). This proves (i). Item (ii) can be treated similarly by using
propostion 1(ii). �

Remark 1. The graphsf̂p can easily be obtained numerically by calculating the Lyapunov
exoponents3(µr) by the weak-limit representation [3] ofµr by going up ton ≈ 10. As
r varies in the interval[0, 1], the corresponding points of̂fp then give rise a continuous
line because of the continuity of the Lyapunov exponents inr. Its end points are given by
(dµp (E+), 0) and(dµp (E−), 0). However, the line may not be the graph of a function as can
be seen in the example given in figure 2. In this figure, we have chosenp to be slightly smaller
than pλ for which the graphf̂pλ is a loop. Obviously, the graph in figure 2 cannot be a
good lower bound for the scaling function. For comparison, we have also plotted the scaling
functions calculated by use of the thermodynamic formalism [10]. This algorithm is proven
([7] and references therein) to give the exact curve of generalized dimensions(D

q
p)q∈R and

by Legendre transform one then obtainsfp. The scaling functionfp and its boundf̂p always
coincide at the information dimension, that isfp(dim(µp)) = f̂p(dim(µp)) = dim(µp) for
all p ∈ [0, 1]. Furthermore, the left border offp always coincides with the left-most point
of f̂p for all p ∈ [0, 1]. Based on this observation, we speculated after proposition 1 that
dµp(E+) is the smallest pointwise dimension forp > pλ anddµp(E−) for p 6 pλ. This would
imply corresponding results in proposition 3(i).

Remark 2. Forp = 1
2 , f̂1/2 gives a tighter lower bound forf1/2, but the curves do not coincide

as the numerics in figure 3 show. Actually, we have the identity already remarked in [7]

f1/2

(
log(2)

3

)
= dim({E ∈ J |3(E) = 3}).

As a function of3, the right-hand side is called the Lyapunov spectrum [7]. Our bound reads

f1/2

(
log(2)

3(µr)

)
> dim({E ∈ J |3(E) = 3(µr) and lim

n→∞ ρn(E) = r}) = dim(µr).

From a measure theoretic point of view, the second condition is always verified when the first
one is (notably, both ergodic limits exist on a set of fullµr -measure). The situation is different
from a dimensional point of view: imposing convergence of the second ergodic sum reduces
the dimension except forr = 0, 1

2 and1.
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Figure 3. The scaling function calculated by use of the thermodynamic formalism and the graph
of its lower bound (4) forλ = 2.05 andp = 0.42.

Remark 3. The borders offp are equal to the asymptotics of the curveDq
p in the limits

q → ±∞ which are numerically more delicate to determine by the thermodynamical
formalism.

Remark 4. Let |n〉 = Pn(E), n ∈ N, be the orthogonal polynomials associated toµ1/2 andH
the corresponding Jacobi matrix. When studying quantum diffusion on the basis(|n〉)n∈N of
the dynamics governed byH [4–6], one is interested in the transport exponentsβ(q) defined
by ∫ T

0

dt

T

∑
n>0

nq |〈n|e−iHt |0〉|2 ∼
T ↑∞

T qβ(q).

As argued in [6], one hasβ(q) = D1/2
1−q for all q > 0. Thus proposition 3 implies

lim
q→∞β(q) =

log(2)

log(
√

1 + 4λ− 1)
.
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